An existence theorem for cyclic triplewhist tournaments

نویسندگان

  • Ian Anderson
  • S. D. Cohen
  • Norman J. Finizio
چکیده

We show that a Z-cyclic triplewhist tournament TWh(v) exists whenever v =p] . . . . p~ where the primes p~ are -5(mod8) , p~>29. The method of construction uses the existence of a primitive root ~o of each such Pi (~61) such that ~o2+eo+ 1 are both squares (modpi).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new construction for Z-cyclic whist tournaments

In this paper, a new construction for Z-cyclic whist tournaments is given. The known existence results for both Z-cyclic whist tournaments and Z-cyclic triplewhist tournaments are extended. ? 2003 Elsevier B.V. All rights reserved.

متن کامل

No 17-player Triplewhist Tournament Has Nontrivial Automorphisms

The existence of triplewhist tournaments for v players has recently been solved for all values of v except v = 17. For v = 12 and v = 13 a complete enumeration has shown the nonexistence of TWh (v), while constructions of TWh (v) have been presented for v > 17. For several values of v existence has been shown by constructing a TWh (v) with a prescribed, usually cyclic, automorphism group. In th...

متن کامل

Classification of whist tournaments with up to 12 players

A v-player whist tournament Wh(v) is a schedule of games, each involving two players opposing two others. Every round, the players are partitioned into games, with at most one player left over. Each player partners every other player exactly once and opposes every other player exactly twice during the tournament. Directed whist tournaments DWh(v), and triplewhist tournaments TWh(v), are Wh(v) w...

متن کامل

Splittable Triplewhist Tournament Designs

We show that Z-cyclic splittable triplewhist tournament designs exist for all primes of the form p = 8t + 1, t odd, except possibly p = 41.

متن کامل

t-Pancyclic Arcs in Tournaments

Let $T$ be a non-trivial tournament. An arc is emph{$t$-pancyclic} in $T$, if it is contained in a cycle of length $ell$ for every $tleq ell leq |V(T)|$. Let $p^t(T)$ denote the number of $t$-pancyclic arcs in $T$ and $h^t(T)$ the maximum number of $t$-pancyclic arcs contained in the same Hamiltonian cycle of $T$. Moon ({em J. Combin. Inform. System Sci.}, {bf 19} (1994), 207-214) showed that $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 138  شماره 

صفحات  -

تاریخ انتشار 1995